direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C32⋊4C8, C12.57D6, C62.6C4, C12.8Dic3, C6⋊(C3⋊C8), (C3×C6)⋊4C8, C32⋊9(C2×C8), (C3×C12).9C4, (C6×C12).12C2, (C2×C12).16S3, (C2×C6).7Dic3, C4.3(C3⋊Dic3), C6.12(C2×Dic3), (C3×C12).48C22, C22.2(C3⋊Dic3), C3⋊2(C2×C3⋊C8), C4.14(C2×C3⋊S3), (C2×C4).5(C3⋊S3), (C3×C6).31(C2×C4), C2.1(C2×C3⋊Dic3), SmallGroup(144,90)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C2×C32⋊4C8 |
Generators and relations for C2×C32⋊4C8
G = < a,b,c,d | a2=b3=c3=d8=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 114 in 66 conjugacy classes, 51 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C6, C8, C2×C4, C32, C12, C2×C6, C2×C8, C3×C6, C3×C6, C3⋊C8, C2×C12, C3×C12, C62, C2×C3⋊C8, C32⋊4C8, C6×C12, C2×C32⋊4C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊S3, C3⋊C8, C2×Dic3, C3⋊Dic3, C2×C3⋊S3, C2×C3⋊C8, C32⋊4C8, C2×C3⋊Dic3, C2×C32⋊4C8
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 65)(9 57)(10 58)(11 59)(12 60)(13 61)(14 62)(15 63)(16 64)(17 83)(18 84)(19 85)(20 86)(21 87)(22 88)(23 81)(24 82)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)(33 112)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(49 127)(50 128)(51 121)(52 122)(53 123)(54 124)(55 125)(56 126)(73 115)(74 116)(75 117)(76 118)(77 119)(78 120)(79 113)(80 114)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 137)(96 138)(97 130)(98 131)(99 132)(100 133)(101 134)(102 135)(103 136)(104 129)
(1 91 119)(2 120 92)(3 93 113)(4 114 94)(5 95 115)(6 116 96)(7 89 117)(8 118 90)(9 86 98)(10 99 87)(11 88 100)(12 101 81)(13 82 102)(14 103 83)(15 84 104)(16 97 85)(17 62 136)(18 129 63)(19 64 130)(20 131 57)(21 58 132)(22 133 59)(23 60 134)(24 135 61)(25 110 50)(26 51 111)(27 112 52)(28 53 105)(29 106 54)(30 55 107)(31 108 56)(32 49 109)(33 122 47)(34 48 123)(35 124 41)(36 42 125)(37 126 43)(38 44 127)(39 128 45)(40 46 121)(65 76 140)(66 141 77)(67 78 142)(68 143 79)(69 80 144)(70 137 73)(71 74 138)(72 139 75)
(1 24 31)(2 32 17)(3 18 25)(4 26 19)(5 20 27)(6 28 21)(7 22 29)(8 30 23)(9 122 73)(10 74 123)(11 124 75)(12 76 125)(13 126 77)(14 78 127)(15 128 79)(16 80 121)(33 137 98)(34 99 138)(35 139 100)(36 101 140)(37 141 102)(38 103 142)(39 143 104)(40 97 144)(41 72 88)(42 81 65)(43 66 82)(44 83 67)(45 68 84)(46 85 69)(47 70 86)(48 87 71)(49 62 120)(50 113 63)(51 64 114)(52 115 57)(53 58 116)(54 117 59)(55 60 118)(56 119 61)(89 133 106)(90 107 134)(91 135 108)(92 109 136)(93 129 110)(94 111 130)(95 131 112)(96 105 132)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
G:=sub<Sym(144)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,81)(24,82)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,112)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(49,127)(50,128)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,113)(80,114)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,137)(96,138)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129), (1,91,119)(2,120,92)(3,93,113)(4,114,94)(5,95,115)(6,116,96)(7,89,117)(8,118,90)(9,86,98)(10,99,87)(11,88,100)(12,101,81)(13,82,102)(14,103,83)(15,84,104)(16,97,85)(17,62,136)(18,129,63)(19,64,130)(20,131,57)(21,58,132)(22,133,59)(23,60,134)(24,135,61)(25,110,50)(26,51,111)(27,112,52)(28,53,105)(29,106,54)(30,55,107)(31,108,56)(32,49,109)(33,122,47)(34,48,123)(35,124,41)(36,42,125)(37,126,43)(38,44,127)(39,128,45)(40,46,121)(65,76,140)(66,141,77)(67,78,142)(68,143,79)(69,80,144)(70,137,73)(71,74,138)(72,139,75), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,122,73)(10,74,123)(11,124,75)(12,76,125)(13,126,77)(14,78,127)(15,128,79)(16,80,121)(33,137,98)(34,99,138)(35,139,100)(36,101,140)(37,141,102)(38,103,142)(39,143,104)(40,97,144)(41,72,88)(42,81,65)(43,66,82)(44,83,67)(45,68,84)(46,85,69)(47,70,86)(48,87,71)(49,62,120)(50,113,63)(51,64,114)(52,115,57)(53,58,116)(54,117,59)(55,60,118)(56,119,61)(89,133,106)(90,107,134)(91,135,108)(92,109,136)(93,129,110)(94,111,130)(95,131,112)(96,105,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)>;
G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,65)(9,57)(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,81)(24,82)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,112)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(49,127)(50,128)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(73,115)(74,116)(75,117)(76,118)(77,119)(78,120)(79,113)(80,114)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,137)(96,138)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129), (1,91,119)(2,120,92)(3,93,113)(4,114,94)(5,95,115)(6,116,96)(7,89,117)(8,118,90)(9,86,98)(10,99,87)(11,88,100)(12,101,81)(13,82,102)(14,103,83)(15,84,104)(16,97,85)(17,62,136)(18,129,63)(19,64,130)(20,131,57)(21,58,132)(22,133,59)(23,60,134)(24,135,61)(25,110,50)(26,51,111)(27,112,52)(28,53,105)(29,106,54)(30,55,107)(31,108,56)(32,49,109)(33,122,47)(34,48,123)(35,124,41)(36,42,125)(37,126,43)(38,44,127)(39,128,45)(40,46,121)(65,76,140)(66,141,77)(67,78,142)(68,143,79)(69,80,144)(70,137,73)(71,74,138)(72,139,75), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,122,73)(10,74,123)(11,124,75)(12,76,125)(13,126,77)(14,78,127)(15,128,79)(16,80,121)(33,137,98)(34,99,138)(35,139,100)(36,101,140)(37,141,102)(38,103,142)(39,143,104)(40,97,144)(41,72,88)(42,81,65)(43,66,82)(44,83,67)(45,68,84)(46,85,69)(47,70,86)(48,87,71)(49,62,120)(50,113,63)(51,64,114)(52,115,57)(53,58,116)(54,117,59)(55,60,118)(56,119,61)(89,133,106)(90,107,134)(91,135,108)(92,109,136)(93,129,110)(94,111,130)(95,131,112)(96,105,132), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144) );
G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,65),(9,57),(10,58),(11,59),(12,60),(13,61),(14,62),(15,63),(16,64),(17,83),(18,84),(19,85),(20,86),(21,87),(22,88),(23,81),(24,82),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44),(33,112),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(49,127),(50,128),(51,121),(52,122),(53,123),(54,124),(55,125),(56,126),(73,115),(74,116),(75,117),(76,118),(77,119),(78,120),(79,113),(80,114),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,137),(96,138),(97,130),(98,131),(99,132),(100,133),(101,134),(102,135),(103,136),(104,129)], [(1,91,119),(2,120,92),(3,93,113),(4,114,94),(5,95,115),(6,116,96),(7,89,117),(8,118,90),(9,86,98),(10,99,87),(11,88,100),(12,101,81),(13,82,102),(14,103,83),(15,84,104),(16,97,85),(17,62,136),(18,129,63),(19,64,130),(20,131,57),(21,58,132),(22,133,59),(23,60,134),(24,135,61),(25,110,50),(26,51,111),(27,112,52),(28,53,105),(29,106,54),(30,55,107),(31,108,56),(32,49,109),(33,122,47),(34,48,123),(35,124,41),(36,42,125),(37,126,43),(38,44,127),(39,128,45),(40,46,121),(65,76,140),(66,141,77),(67,78,142),(68,143,79),(69,80,144),(70,137,73),(71,74,138),(72,139,75)], [(1,24,31),(2,32,17),(3,18,25),(4,26,19),(5,20,27),(6,28,21),(7,22,29),(8,30,23),(9,122,73),(10,74,123),(11,124,75),(12,76,125),(13,126,77),(14,78,127),(15,128,79),(16,80,121),(33,137,98),(34,99,138),(35,139,100),(36,101,140),(37,141,102),(38,103,142),(39,143,104),(40,97,144),(41,72,88),(42,81,65),(43,66,82),(44,83,67),(45,68,84),(46,85,69),(47,70,86),(48,87,71),(49,62,120),(50,113,63),(51,64,114),(52,115,57),(53,58,116),(54,117,59),(55,60,118),(56,119,61),(89,133,106),(90,107,134),(91,135,108),(92,109,136),(93,129,110),(94,111,130),(95,131,112),(96,105,132)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)]])
C2×C32⋊4C8 is a maximal subgroup of
Dic3×C3⋊C8 C3⋊C8⋊Dic3 C12.77D12 D12⋊3Dic3 Dic6⋊Dic3 C12.81D12 C12.6Dic6 C12.8Dic6 C62.5Q8 C122.C2 C12.57D12 C12.9Dic6 C12.10Dic6 C62.113D4 C62.114D4 C8×C3⋊Dic3 C12.30Dic6 C24⋊Dic3 C12.60D12 C62.8Q8 C62⋊7C8 C62.116D4 C62.117D4 C62.4C8 C2×S3×C3⋊C8 D12.Dic3 D12.30D6 C2×C8×C3⋊S3 C24.47D6 D4.(C3⋊Dic3) C62.74D4
C2×C32⋊4C8 is a maximal quotient of
C12.57D12 C24.94D6 C62⋊7C8
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | ··· | 6L | 8A | ··· | 8H | 12A | ··· | 12P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 9 | ··· | 9 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | C8 | S3 | Dic3 | D6 | Dic3 | C3⋊C8 |
kernel | C2×C32⋊4C8 | C32⋊4C8 | C6×C12 | C3×C12 | C62 | C3×C6 | C2×C12 | C12 | C12 | C2×C6 | C6 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 4 | 4 | 4 | 4 | 16 |
Matrix representation of C2×C32⋊4C8 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 72 | 72 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
51 | 0 | 0 | 0 | 0 |
0 | 39 | 47 | 0 | 0 |
0 | 8 | 34 | 0 | 0 |
0 | 0 | 0 | 46 | 27 |
0 | 0 | 0 | 0 | 27 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,72,1,0,0,0,72,0,0,0,0,0,0,72,72,0,0,0,1,0],[1,0,0,0,0,0,0,72,0,0,0,1,72,0,0,0,0,0,1,0,0,0,0,0,1],[51,0,0,0,0,0,39,8,0,0,0,47,34,0,0,0,0,0,46,0,0,0,0,27,27] >;
C2×C32⋊4C8 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes_4C_8
% in TeX
G:=Group("C2xC3^2:4C8");
// GroupNames label
G:=SmallGroup(144,90);
// by ID
G=gap.SmallGroup(144,90);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,50,964,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations